RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5.

نویسندگان

  • Yuan Xiao Zhu
  • Rodger Tiedemann
  • Chang-Xin Shi
  • Holly Yin
  • Jessica E Schmidt
  • Laura A Bruins
  • Jonathan J Keats
  • Esteban Braggio
  • Chris Sereduk
  • Spyro Mousses
  • A Keith Stewart
چکیده

The molecular target(s) cooperating with proteasome inhibition in multiple myeloma (MM) remain unknown. We therefore measured proliferation in MM cells transfected with 13 984 small interfering RNAs in the absence or presence of increasing concentrations of bortezomib. We identified 37 genes, which when silenced, are not directly cytotoxic but do synergistically potentiate the growth inhibitory effects of bortezomib. To focus on bortezomib sensitizers, genes that also sensitized MM to melphalan were excluded. When suppressed, the strongest bortezomib sensitizers were the proteasome subunits PSMA5, PSMB2, PSMB3, and PSMB7 providing internal validation, but others included BAZ1B, CDK5, CDC42SE2, MDM4, NME7, RAB8B, TFE3, TNFAIP3, TNK1, TOP1, VAMP2, and YY1. The strongest hit CDK5 also featured prominently in pathway analysis of primary screen data. Cyclin-dependent kinase 5 (CDK5) is expressed at high levels in MM and neural tissues with relatively low expression in other organs. Viral shRNA knockdown of CDK5 consistently sensitized 5 genetically variable MM cell lines to proteasome inhibitors (bortezomib and carfilzomib). Small-molecule CDK5 inhibitors were demonstrated to synergize with bortezomib to induce cytotoxicity of primary myeloma cells and myeloma cell lines. CDK5 regulation of proteasome subunit PSMB5 was identified as a probable route to sensitization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma

PURPOSE Despite significant therapeutic progress in multiple myeloma, drug resistance is uniformly inevitable and new treatments are needed. Our aim was to identify novel, efficacious small-molecule combinations for use in drug resistant multiple myeloma. EXPERIMENTAL DESIGN A panel of 116 small molecule inhibitors was used to screen resistant myeloma cell lines for potential therapeutic targ...

متن کامل

Mechanism of action of bortezomib in multiple myeloma therapy

A proteasome inhibitor, bortezomib (BTZ), was initially reported as an inhibitor of the NF-κB pathway, which plays a critical role in the pathogenesis of multiple myeloma (MM). The NF-κB activity of MM cells is mediated via two distinguishable pathways, canonical and non-canonical, which showed opposing action after BTZ treatment in MM cells. Recent studies of proteasome inhibition in MM cells ...

متن کامل

Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma.

Bortezomib (BTZ), a proteasome inhibitor, was initially reported as an inhibitor of the NF-κB pathway, which plays a critical role in the pathogenesis of multiple myeloma (MM). The NF-κB activity of MM cells is mediated via two distinct pathways, canonical and non-canonical, which show opposing activity after BTZ treatment in MM cells. Recent studies of proteasome inhibition in MM cells reveal ...

متن کامل

A genetic interaction map of cell cycle regulators

Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis inDrosophilaS2 cells. Th...

متن کامل

A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor.

Inhibitors of poly (ADP-ribose)-polymerase-1 (PARP) are highly lethal to cells with deficiencies in BRCA1, BRCA2 or other components of the homologous recombination pathway. This has led to PARP inhibitors entering clinical trials as a potential therapy for cancer in carriers of BRCA1 and BRCA2 mutations. To discover new determinants of sensitivity to these drugs, we performed a PARP-inhibitor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 117 14  شماره 

صفحات  -

تاریخ انتشار 2011